

## INDIAN SCHOOL AL WADI AL KABIR Department: Mathematics

Class X Worksheet - Triangles
10-06-2021

## 1mark questions

Q.1. In the fig, $\mathrm{PQ}=24 \mathrm{~cm}, \mathrm{QR}=26 \mathrm{~cm}, \angle \mathrm{PAR}=90^{\circ}, \mathrm{PA}=6 \mathrm{~cm}$ and $\mathrm{AR}=8 \mathrm{~cm}$. Find $\angle \mathrm{QPR}$.

Q.2. In the fig, $\mathrm{PQ} \| \mathrm{BC}$ and $\mathrm{AP}: \mathrm{PB}=1: 2$, find the ratio of ar $(\triangle \mathrm{APQ})$ to ar $(\triangle \mathrm{ABC})$.

Q. 3.

In $\triangle \mathrm{DEW}, \mathrm{AB} \| \mathrm{EW}$. If $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DE}=12 \mathrm{~cm}$ and $\mathrm{DW}=24 \mathrm{~cm}$, then find the value of DB .
Q.4. In $\triangle A B C, A B=6 \sqrt{3} \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, then find the measure of $\angle \mathrm{B}$.
Q.5.

If $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ such that $\mathrm{AB}=1.2 \mathrm{~cm}$ and $\mathrm{DE}=1.4 \mathrm{~cm}$, then find the ratio of the areas of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$.

## Case study-based question ( $1 \times 4=4$ marks)

Q. 6.

Teacher gives an activity to the students to measure the height of a tree and asks them who will do this activity. Anjali accepts the challenge. She places a mirror on level ground to determine the height of the tree. She stands at a certain distance so that she can see the top of the tree reflected from the mirror. Anjali's eye level is 1.8 m above ground. The distance of Anjali and the tree from the mirror are 1.5 m and 2.5 m respectively.

|  |  |
| :---: | :---: |
| (a) | Refer to the figure and identify the similar triangles: <br> (i) $\Delta \mathrm{ABM} \sim \triangle \mathrm{CDM}$ <br> (ii) $\triangle \mathrm{ABM} \sim \Delta \mathrm{CMD}$ <br> (iii) $\triangle \mathrm{ABM} \sim \triangle \mathrm{MCD}$ <br> (iv) None of these |
| (b) | The similarity criteria applied to prove the similarity of triangles is: <br> (i) SSS <br> (ii) SAS <br> (iii) AA <br> (iv) None of these |
| (c) | The height of the tree is: <br> (i) 3 m <br> (ii) 3.5 m <br> (iii) 2.5 m <br> (iv) 4 m |
| (d) | In $\triangle A B M$, if $\angle A B M=30^{\circ}$ find $\angle M C D$. <br> (i) $65^{\circ}$ <br> (ii) $45^{\circ}$ <br> (iii) $40^{\circ}$ <br> (iv) $30^{\circ}$ |
| (e) | The length of AM is <br> (i) $\sqrt{61} \mathrm{~m}$ <br> (ii) $\frac{\sqrt{61}}{10} \mathrm{~m}$ <br> (iii) $\frac{\sqrt{61}}{2} \mathrm{~m}$ <br> (iv) $\frac{5 \sqrt{61}}{100} \mathrm{~m}$ |
|  | 2 marks questions |
| Q.7. | In fig., if $\mathrm{AD} \perp \mathrm{BC}$, then prove that $A B^{2}+C D^{2}=B D^{2}+A C^{2}$. |
| Q.8. | In fig., $\triangle \mathrm{PQR}$ is right-angled at $\mathrm{P} . \mathrm{M}$ is a point on QR such that PM is perpendicular to QR . Show that $\mathrm{PQ}^{2}=\mathrm{QM} \times \mathrm{QR}$. |


|  |  |
| :---: | :---: |
| Q.9. | A vertical stick 12 m long casts a shadow 8 m long on the ground. At the same time a tower casts the shadow 40 m long on the ground. Determine the height of the tower. |
| Q.10. | In an equilateral triangle of side $3 \sqrt{3} \mathrm{~cm}$, find the length of the altitude. |
| Q.11. | $X$ and $Y$ are points on the sides $A B$ and $A C$ respectively of a triangle $A B C$ such that $\frac{A X}{A B}=\frac{1}{4}$, $A Y=2 \mathrm{~cm}$ and $Y C=6 \mathrm{~cm}$. Find whether $X Y \\| B C$ or not. |
|  | 3 marks questions |
| Q.12. | In $\triangle A B C, D$ and $E$ are points on $A C$ and $B C$ respectively such that $D E \\| A B$. If $A D=2 x$, $\mathrm{BE}=2 \mathrm{x}-1, \mathrm{CD}=\mathrm{x}+1$ and $\mathrm{CE}=\mathrm{x}-1$, then find the value of x . |
| Q.13. | Two poles of height $10 \mathrm{~m} \& 15 \mathrm{~m}$ stand vertically on a plane ground. If the distance between their feet is $5 \sqrt{ } 3 \mathrm{~m}$ then find the distance between their tops. |
| Q.14. | In the given fig., ABCD is a rectangle. P is midpoint of DC . If $\mathrm{QB}=7 \mathrm{~cm}, \mathrm{AD}=9 \mathrm{~cm}$ and $\mathrm{DC}=24 \mathrm{~cm}$, then prove that $\angle \mathrm{APQ}=90^{\circ}$. |


|  |  |
| :---: | :---: |
| Q.15. | In the given figure, ABC is a triangle in which $\mathrm{AB}=\mathrm{AC}$ and D is a point on AC such that $B C^{2}=A C \times C D$. Prove that $B D=B C$. |
| Q.16. | QT and RS are medians of a triangle PQR right angled at P . Prove that $4\left(\mathrm{QT}^{2}+\mathrm{RS}^{2}\right)=5 \mathrm{QR}^{2}$ |
| Q.17. | In $\triangle \mathrm{ABC}, \mathrm{AD}$ is perpendicular $\mathrm{BC} . \mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{DC}$. Prove that $\triangle \mathrm{ABC}$ is a right - angled triangle. |
|  | 5 marks questions |
| Q.18. | In the given figure, $D$ and $E$ trisect $B C$. Prove that $8 \mathrm{AE}^{2}=3 \mathrm{AC}^{2}+5 \mathrm{AD}^{2}$. |
| Q.19. | Two poles of height a and $\mathrm{b}(\mathrm{b}>\mathrm{a})$ are c metres apart. Prove that the height h (in metres) of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is $\frac{a b}{a+b}$. |


|  |  |
| :---: | :---: |

Q.20.

In fig, $\mathrm{AB}\|\mathrm{PQ}\| \mathrm{CD}, \mathrm{AB}=\mathrm{x}$ units, $\mathrm{CD}=\mathrm{y}$ units and $\mathrm{PQ}=\mathrm{z}$ units. Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.


ANSWERS

| Q.1 | $90^{\circ}$ | Q.2 | $1: 9$ | Q.3 | 8 cm | Q.4 | $90^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q.5 | $36: 49$ | $\mathbf{Q . 6}$ | $\mathrm{a}(\mathrm{i}), \mathrm{b}(\mathrm{iii}), \mathrm{c}(\mathrm{i})$, <br> $\mathrm{d}(\mathrm{iv}), \mathrm{e}(\mathrm{iii})$ | Q.9 | 60 m | $\mathbf{Q . 1 0}$ | 4.5 cm |
| Q.12 | $\mathrm{x}=\frac{1}{3}$ | Q.13 | 10 m |  |  |  |  |

